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Abstract
We show that fMRI analysis using machine learning tools are sufficient to distinguish
valence (i.e., positive or negative) of freely retrieved autobiographical memories in a
cross-participant setting. Our methodology uses feature selection (ReliefF) in combina-
tion with boosting methods, both applied directly to data represented in voxel space. In
previous work using the same data set, Nawa and Ando showed that whole-brain based
classification could achieve above-chance classification accuracy only when both training
and testing data came from the same individual. In a cross-participant setting, classifica-
tion results were not statistically significant. Additionally, on average the classification
accuracy obtained when using ReliefF is substantially higher than previous results - 81%
for the within-participant classification, and 62% for the cross-participant classification.
Furthermore, since features are defined in voxel space, it is possible to show brain maps
indicating the regions of that are most relevant in determining the results of the classifi-
cation. Interestingly, the voxels that were selected using the proposed computational
pipeline seem to be consistent with current neurophysiological theories regarding the
brain regions actively involved in autobiographical memory processes.
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1 Introduction

Memory encoding and retrieval are arguably two of the most complex cognitive processes
performed by humans [1, 2]. Study of this process is a central concern of psychology and
memory researchers. A technological window on cognitive activities in general, and memory
in particular, is the use of neuroimaging techniques to help elucidate the neurophysiological
basis underlying such memory processes. The combination of neuroimaging technology with
machine learning techniques [3–6] has opened a promising front in the past decade or so. A
common approach has been to attempt to identify cognitive processes, states or disorders from
neuroimaging data using various types of machine learning techniques. Although progress has
been made in the field, the subtleties of memory processes pose a considerably more
challenging task, as compared to tasks involving, for instance, the perception of visual stimuli.

The retrieval of episodic memories derived from events experienced from one’s personal
past – i.e., autobiographical memories – has been shown to recruit a brain-wide network of
regions, such as medial and lateral temporal structures, most notably the hippocampus (HC)
and parahippocampus, prefrontal areas including dorsolateral and ventromedial regions, pos-
terior midline regions such as precuneus (PCUN) and retrosplenial cortex (RSC), and lateral
parietal cortex [7–10]. The retrieval of emotional memories, i.e., memories of events associ-
ated with greater levels of arousal or valence [11], in particular, has been associated with
heightened activity in prefrontal regions, and oftentimes the amygdala [12–14].

In Nawa and Ando [15] the authors investigated freely retrieved autobiographical memory
formation and showed that, in fact, it is possible to reliably distinguish between autobiograph-
ical memory retrieval and a completely different cognitive task (in their case, counting
backwards) based on data from a single fMRI scan (or volume). This worked also in a
cross-participant setting; i.e., when using data from n-1 participants to train the machine
learning classifier and using data from the left-out participant to test the classifier generaliz-
ability and accuracy. They decided to pursue this without choosing a priori regions of interest
(ROIs), under the assumption that since memory retrieval is a complex process involving
many regions, there could be loss of information by focusing in selected brain areas. They also
proceeded to the even more delicate task of distinguishing between two different kinds of
autobiographical memory, those with positive valence from those with negative valence. They
did succeed in this task at a significant level but only in a within-participant setting, i.e., when
using a subset of the scans not used for training when testing the generalizability and accuracy
but with all scans collected from the same individual. However, they did not succeed in doing
this for generalizing to memories from a novel individual (the cross-participant setting).

In this work, we show that it is possible to dramatically increase the performance for the
cross-participant setting when applying a combination of techniques, provided that a strong
voxel selection is performed prior to the machine learning training stage proper. Although this
may be in contradiction with the idea of using data from the entire brain because of the
complexity of memory retrieval processes, feature selection may have an effect akin to
strengthening the signal to noise in the training signal. Moreover, by examining the location
of the voxels most often selected across participants, it was possible to confirm that qualita-
tively, some of the voxels driving the machine learning classification were located on brain
regions that are known to be involved with autobiographical memory processes. This suggests
that machine learning techniques may also serve as tools of discovery by suggesting to
neuroscientists areas of potential interest with regard to a cognitive function, in an information
theoretic principled way.
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2 Methodology

2.1 Experimental data

In this work we used the same data set reported in Nawa and Ando [15]. Their protocol for the
autobiographical recall task was as follows (for a more detailed explanation of the experiment,
see [15]). Participants performed three types of mental tasks while in the MRI scanner: a
countdown task, a positive autobiographical memory retrieval task, and a negative autobio-
graphical memory retrieval task. Figure 1 shows a graphical representation of the data
collection protocol. In essence, each participant participated in 12 scanning sessions, each
session consisted of three blocks of either “positive autobiographical memory retrieval and
counting backwards tasks” or three “negative memory and then counting tasks”. Each such
experimental task block consisted of memory (either positive or negative) task and countdown
task. The memory task lasted 32 s followed by 16 s of rest after which the countdown task
(32 s) was executed. Each block type was repeated 3 times in each session. In 6 sessions,
subjects switched between negative memory and countdown tasks (i.e., M_A and Cn tasks)
and in the remaining 6 sessions they switched between tasks between positive memory and
countdown tasks (i.e., M_B and Cn tasks). All sessions were performed in the same day. One
hundred forty-seven scans were acquired in each session (TR = 2 s, 33 4-mm slices, in-plane
spatial resolution of 3 mm × 3 mm). Each single scan was encoded as a vector containing the
blood-oxygen level dependent (BOLD) signal of voxels covering the entire brain. From a
machine learning perspective, the most important points of the study are that (i) there were no
restrictions on the contents of the memories, i.e., the retrieved memories did not have to
necessarily be associated with landmark personal events but rather with more mundane
episodes; participants were only requested to thoroughly “relive” the original event during
the scan, by focusing on the circumstances that led to the event and other details associated
with it, and (ii) the relatively long scanning time that allowed the participants to “freely
engage” into the execution of the task.

A machine learning-based scheme was then employed to predict the valence of the
autobiographical memories recalled by human subjects based on the information contained
in a single functional magnetic resonance imaging (fMRI) scan. Subjects (N = 11, 6 females,
age 21–37, average 28.2 years old, right-handed) were asked beforehand to prepare a list of
happy and sad events that they had experienced in the past. During scanning, subjects were
asked to keep their eyes closed and given auditory cues which indicated whether they should
alternate between counting down numbers and recollecting positive autobiographical memo-
ries or counting down and recollection of negative autobiographical memories (see Fig. 1 for
details). The memory recollection task was conducted in a self-paced manner, during which
subjects were asked to remember as many details as possible about the events.

2.2 Machine learning and data mining methodology

The entire process of classification is depicted in Fig. 2. After a standard data preprocessing
step (for details, see [15]), the data of the participants were divided into training and testing
groups. The machine learning procedures that were applied on the training group consisted of:
(i) scoring the voxels by their relevance to the classification task, and then performing feature
selection using a form of thresholding (ii) construction of a classification method using tree
stumps from the selected voxels and (iii) a version of the AdaBoost methodology on the
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stump. Next, the classifier was evaluated on the test group data, and we examined both the
efficiency of the selected features (i.e., brain regions), and the performance of the classification
algorithm.

These steps are explained in more detail below.

2.2.1 Pre-processing step

Imaging data was acquired on a 3 T Siemens Magnetom Trio, A Tim System scanner
(Siemens Healthcare, Erlangen, Germany) equipped with a 12-channel standard head coil. A
standard preprocessing pipeline was adopted before the data was used to train and test the
classifiers, which included temporal slice time correction, spatial realignment, normalization to
a standard stereotaxic space (Montreal Neurological Institute, MNI) and spatial smoothing
(Gaussian kernel of 8-mm full width at half maximum). Those steps were performed using the
functions available in SPM 5 (Wellcome Trust Centre for Neuroimaging, UK, http://www.fil.
ion.ucl.ac.uk/spm/software/spm5). During the spatial normalization, for each subject, a visual
inspection of the results was performed by validating the registration of selected landmark
points with reference to the brain template. Most importantly, normalized images were
rewritten using the voxel size originally employed during data collection (3 × 3 × 4 mm).

2.2.2 Feature selection

The goal of feature selection is twofold. First, from a purely data driven aspect, feature
selection is an effective way to reduce the number of dimensions, and avoid the “curse of
dimensionality “problem [16]. Since each voxel represents a feature, the number of
possible features is much larger than the amount of data points, i.e., brain scans: there

Fig. 1 –12 Sessions were recorded from participant, each session consisted from three memory tasks and three
counting tasks (in alternating fashion), each task consisted from 32 s of recording time and 12 s of resting period.
The scanning speed was 2 s resulting in 16 volumes per task
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were nearly 40,000 voxels for a total of about 600 scans (from the two conditions of
positive and negative autobiographical memories for each one of the participants). Not
having to deal with such an extremely large number of features, given the small number of
data points, is likely to be crucial to improve classification results. The second goal of
feature selection has to do with the role of machine learning classification in realm of
neuroscience research; by keeping the features in voxel space during the process of
dimensionality reduction, and the machine learning based classification per se (as opposed
to defining features in a more abstract space, e.g., the inner level representations common
to deep learning networks [17]), it is possible to more easily understand the results, i.e.,
which areas of the brain contain the most discriminative information for the purposes of
classification), and consequently, obtain more meaningful insights with regard to the brain
regions or networks.

This led us to the design of the following “two staged” feature selection process: first, a
“gross” feature selection method is applied in order to select a subset of the features to
concentrate the computational power on. This step is explained in this section. Later, during
the classification procedure, a finer and multivariate feature selection method is applied in
order to focus on the most informative features and fuse them into a single spatial activation
pattern. This step is explained in the next section (Classification).

For the first, “gross”, feature selection step, a ReliefF [18] algorithm is used in this scheme.
In essence, the algorithm works by randomly sampling instances and for each such instance
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Fig. 2 – a) A sketch of the proposed method, that includes feature selection, classifier’s training and testing
phases, and b) an example of a histogram showing the frequency of specific voxels in the normalized brain
coordinates being chosen, sorted by frequency during the feature selection process
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locating its ‘k’ nearest neighbours from the same and opposite classes.1 The values of the
features of the nearest neighbours are compared to the sampled instance and used to update
(for each sampled instance) what is called the relevance scores for each feature (i.e., the closer
a sample is to a same class sample, the higher its relevance). The relevance scores are
calculated by the following equation:

Wi ¼ Wi−
∑
K

k¼1
DistH kð Þ
n � K þ

∑
K

k¼1
DistM kð Þ
n � K ð1Þ

Here ‘K’ is the number of neighbors, ‘n’ is the number of repetitions (i.e., the number of
randomly selected instances from the dataset), ‘H’ are the neighbors selected from the current
sample’s group (i.e., “Hits”) and ‘M’ are the selected neighbors from the opposite group (i.e.,
“Misses”). The DistH(k)is the distance between the selected instance and its k-th nearest
neighbor in H (the same for M).

This algorithm has several properties that makes it suitable for this type of preliminary
feature selection. First, the algorithm provides feature ranking, in terms of its relevance to the
classification task. Second, since the features are evaluated in “K-nearest neighbor” (KNN)
fashion, its probability of error is close to a Bayesian decision rule (see [19]) and strongly
correlated with impurity functions (in other words it calculates the amount of probability of a
specific feature that is classified incorrectly when selected randomly [20]). This in turn makes
this process relatively resilient to noise that is typically observed in fMRI data.

The specific choice of “k” depends on a balance between the amount of data, computa-
tional resources and desired accuracy [21]. In essence, higher “K” will redure the sensitivity of
algorithm to noise by calculating the average distance. On the other hand, in small datasets,
higher “K” can account unrelated information. In our work, (see below) we settled on K = 3.
With substantially additional data and computational power, our impression from minor tests
is that a larger K (e.g. K = 6) might improve our results.

Thus, following the above methodology results in a choice of the subset of voxels both by
maximizing the certainty of decision individually on each voxel as well as being relatively
resilient to noise in the training data.

However, since ReliefF is an iterative algorithm, in our use of the algorithm we have to
consider that for each feature (40,000 voxels) all data points are needed, resulting in (~600
scans per participant × 11 participants x the value of K) iterations so the algorithm could be
very time-consuming. In order to make this feasible and to reduce the influence of the noisy
features we used a sampling methodology which we chose to do over the data. That is, not all
the data-points were used in order to evaluate feature’s influence.

After the relevance values are computed, we chose (i.e., threshold) the best 2500 voxels as
our features, i.e., N = 2500 voxels. Since this feature selection is really a univariant method;
while our classification algorithm (below) is multi-variate a balancing between introducing too
much noise in the classification algorithm (from not sufficiently relevant voxels) and having
sufficient information available for the classification algorithm is required. In addition we also
needed to keep in mind the processing speed (i.e. training and validation times). We heuris-
tically chose 2500 as approximately 5–10% of the total voxels in the brain volume since (i) we
expected that only a small fraction of the brain in engaged in the specific task and (ii) in

1 Note: Should all training data points be selected, the algorithm is deterministic. In this study, we sampled 10%
of the data.
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analyses of other tasks [3, 4, 22] we found that this amount of voxels on similar resolution
scans gives an appropriate compromise.

2.2.3 Classification

While the initial feature selection scheme performed by the ReliefF algorithm aimed at
finding the subset of voxelswith reduced levelsof noise (as explained in theprevious section),
the classification step aims to find amultivariate activation pattern between those voxels that
can be reliably associated in distinguishing two cognitive states, i.e., any twoof remembering
positive autobiographical memory, a negative autobiographical memory, or counting num-
bers backwards. In order to achieve that, an ensemble learning method was used as the
classification scheme.More specifically, in this paperweused theAdaBoost [23, 24]method.
In earlier work [15]Nawa used support vectormachines (SVM) as the algorithm on the entire
brain. Someadvantages of theAdaBoostmethod (as opposed toSVMorneural networks) can
be seen by considering Eq. 2 below. The underlying idea behind ensemble learning is to (i)
find the bestweak learners, i.e.,maximally correlatedwith the desired classification, and then
(ii) find the best linear combination of weak learners to strengthen the final classification. In
our case this means finding the voxels whose ensembled activation is maximally correlated
(even if the correlation have small positive or negative values) to the valence of autobio-
graphical memories; and then finding the best linear combination of these voxels, in order to
obtain a robust multivariate classification tool. Furthermore, since all the steps take place in
voxel space, we can directly visualize, e.g., on a standard MNI brain, the location of the
voxels, and their relative importance for classification accuracy.This is a relativelydirectway
to pick out important patterns of activation.

In other words, we can represent this process as finding the appropriate weights of each of
the selected voxel-based classifiers. Thus, our classifier is of the form of:

P xð Þ ¼ w1 f 1 x1ð Þ þ w2 f 2 x2ð Þ þ…þ wi f i xið Þ ð2Þ
where the final decision is based on the sign of P. (Here xi is the i’th coordinate of x.)

One way to tackle this problem is to find the wifi(xi), i.e., turn each voxel into a “weak
classifier”, fi(xi), that is based on a single voxel and performs slightly better than chance level.
The wi would be the weight of this classifier in the final decision. This can be achieved by
using a decision tree stump methodology (i.e., a one-level decision tree) [25]. Practically, each
voxel from the remaining set (i.e., after the feature selection procedure) splits the training
dataset into two groups, namely positive and negative autobiographical memories, using a cut
(in the voxel value) that gives the best separation gain. In this scheme, the gain was computed
using Cross Entropy measure [26].

One method of finding the wi’s (see Eq. 2) is to proceed in a greedy fashion by starting with
just one voxel (the highest correlated one) and then, in each iteration for each remaining voxel
separately, find the optimal w; and then compare the best results over all choices of the voxels.
In essence, we would like to minimize the training error Ei (see Eq. 3) with each iteration i (i.e.
with each addition of a new classifier trained on additional modality). This iterative method is
called AdaBoost [23].

Ei ¼ ∑
i
E Pi−1 xið Þ þ wt f i xið Þ½ � ð3Þ
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Here Ei is the sum of the training error at iteration i, Pi is the final classifier after i iterations,
fi(xi) is the output hypothesis produced by a single classifier for each voxel in the training data-
set and wi is the weight assigned to the i’s.

2.2.4 Further generalization

We would like, if possible, to not only succeed in the classification but also try to identify the
most important brain areas involved in this task. This is not direct from the classification for
various reasons: (i) there is a variability in the selected features due to the cross-validation
iterations that leaves out substantial amount of data (for validation), (ii) the methodology we
use for the voxel feature selection process is actually non-deterministic, in the sense that there
is randomness in the ReliefF algorithm action (the feature weighting algorithm) due to the
sampling process (see section 2.2) and (iii) because the data may contain noise of non-
physiological nature, for instance, task engagement may vary across scans.

To overcome some of these issues, we used a “histogram methodology”. That is, we rerun
the analysis (the left path of the diagram in Fig. 2a) many times and give some indication of the
frequency of a specific voxel being selected as feature on which classification algorithm will
be trained. Initially, this was suggested in the work Boehm and Manevitz [27], but the
computational resources were not available for that study at that time. An example of such a
run can be seen in Fig. 2b, where the x-axis indicate selected voxels (a.k.a. features) and the y-
axis indicate frequency (i.e., the repeatability of a specific feature through different selections).
From Fig. 2b it can be seen that there is a relatively small set of voxels that is frequently
repeated between the different folds. Using this histogram methodology (i) made the feature
selection more stable and as a result substantially lowered the standard deviations as given in
Table 2 below, and (ii) supports our assumption that significant amount of voxels introduced
noise into the “whole brain analysis” based classification scheme used in previous research.

Since the ReliefF is an iterative algorithm (i.e. for each feature (40,000 voxels) all data
points (~600 scans per participant × 11 participants) are sampled over the amount of neighbors
(4)) the algorithm is very time-consuming. Consequently sampling methodology was used;
i.e., not all the data-points were used in order to evaluate a feature’s influence at each fold).
Besides, the decrease in running time, this method reduced the influence of noisy data-samples
due to the sampling process. The sampling ratio of 10% was chosen as a reasonable
compromise between the running time and representation of the dataset.

It is possible that further research on optimizing the parameters, such as sampling percent-
age, might improve these results presented in Section 3. Note that the main result is the success
of separation by valence, which was not successfully generalized in Nawa [15].

3 Results

We report here three types of results; first, classification results for (i) each participant (i.e.
within-participant) and (ii) cross-participants. Both analyses were made at the brain volume
level. Second, we show that it is possible to correlate between the classification success and
each user’s reported degree of vividness experienced during the retrieval of memories. Lastly,
a visual analysis of the voxels selected by the algorithm is presented. Note that due to the equal
number of positive and negative memory tasks no balancing of the training dataset was
required.
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For both sets of classification results, in AdaBoost we stopped after choosing the best 260
voxels. The stoppage at this time was done after limited preliminary results (e.g., around 100
was substantially worse results, while even at the level of 600 there was no significant
increase). Recall that the candidate 2500 voxels were chosen by their univariate quality.

Within-participant results For each participant, the recorded data was divided into train
and test groups in the task block level, i.e. if a specific task is selected to the testing
set, all of its 16 volume scans were excluded from the training set. Since there is a bold
recovery period followed by execution of a neutral task, “block level” selection should
be sufficient in order to avoid a data leakage between training and testing groups. The
division is made randomly using 70%–30% to train and test group respectively (i.e.,
Monte Carlo cross validation) with 100 cross validation cycles. The ReliefF algorithm
narrowed the data to 2500 voxels (approximately 6% of the voxels with highest
weights were selected), and the final classification performed using a combination of
260 voxels selected from this subset using the AdaBoost algorithm as described in
previous section.

The overall classification results for each of the 11 participants are presented in Table 1. A
permutation test of independence was applied in order to validate the results. In order to
calculate the p value, 1000 permutations were performed at the block level per participant,
resulting p values of the classification result reported in the Table 1 below. (A p value of 0.001
is the minimum in this case).

Cross-participant results Table 2 presents cross participants results. The cross-validation
division into train and validation sets was 70% - 30% accordingly at the participant level
(i.e., all the volumes of selected participants were included or excluded from the training set).
The presented results were generated using 20 cross validation cycles, with random choice of
the train/test groups. To validate the results, a permutation test was carried out, wherein we
repeated the same classification process with permuted labels at block level. We repeated the
test 100 times (a smaller number of permutations was used due to computational constraints) in
order to create the probability function for randomized results and measure the significance
level of the classification, which is p = 0.039.

Table 1 – Classification results within participant at task level. First column indicates participant number, second
column is the average classification result and third is a result of a permutation test (1000 permutations used)

# Classification Result P value derived from
permutation tests

1 0.852 0.032
2 0.684 0.045
3 0.750 0.030
4 0.869 0.028
5 0.617 0.041
6 0.782 0.021
7 0.649 0.039
8 0.924 0.008
9 0.897 0.015
10 0.951 0.003
11 0.971 0.003
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Correlating neuroimaging data with psychological data Figure 3 presents the correlation
between the classification success rate (y-axis), within participant, and the reported degree of
vividness (x axis) per each participant. Participants were asked to evaluate the vividness of the
retrieved memories after scanning using a 11-point scale (0: low, 10: high) [15].

3.1 Selected voxels visual analysis

For visual analysis of the brain areas which give the candidate voxels (i.e., the univariate
choices) from which voxels were selected for the classification, the following procedure was
performed: First, the feature selection step from the classification pipeline is executed using
100 folds for each participant, i.e., re-choosing the 70–30 training-validation split. During each
fold, 2500 voxels with highest weights were selected and the occurrence of each voxel across
the different folds was counted. Then, the resulting “voxel counts” from all the participants
were superimposed (added) on the same MNI brain volume. Later, for visualization purposes,
the resulting image was smoothed using a Gaussian kernel of 6-mm full width at half
maximum and then manually thresholded to show the ~2500 voxels with the highest values
(out of which clusters containing less than 5 voxels were removed). Fig. 4 presents a view of
the results of this procedure where warmer colors indicate higher values of the smoothed
averaged histogram values. (This method eliminates isolated voxels even with relatively high
histogram values; thereby allowing visualization of the most relevant brain areas based on our
classification methods.)

Table 2 – Confusion matrix for cross-participants classification results. The number in the upper left corner is the
average of the diagonal (i.e., the average classification result)

Cross Participants (0.624) Mem Neg’ Mem Pos’

Mem Neg’ 0.633 ± 0.018 0.367 ± 0.018
Mem Pos’ 0.384 ± 0.024 0.616 ± 0.024

Fig. 3 – Correlation between the classification success rate and the reported degree of vividness. (Note, that this
graph omits one outlier)
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It can be seen that there are two main (i.e., largest) clusters, located at the general area of
Precuneus (PCUN) and Superior Frontal Gyrus (SFG), which are known to be related to
recollection of emotional encodings (SFG) and with episodic memories (Precuneus).

4 Summary and discussion

In Nawa and Ando [15] the researchers felt that it was preferable to do a whole-brain analysis;
and they suggested some potential machine learning advantages. Most important of these was
the suggestion that since the autobiography memory task is a complex one; much more of the
brain (and hence its activation pattern) would be involved in the task; and therefore, using all
of the voxels would boost the percentage of the appropriate signal in the data being used for
the classification. We do not feel the work in this paper contradicts this and, in fact, it is
reasonably understood that memory tasks are quite sophisticated cognitively and apparently
utilize many brain regions. (For example, frontal brain structures involved in working memory
also underlie declarative memory in both encoding and recall [28].)

Fig. 4 – A representation (over a normalized MNI brain) of the average of the individual histograms (over the
100 feature selection folds) of best features for classification within individuals. Warmer colors indicate higher
average histogram values. The two biggest clusters include the Precuneus (PCUN) and Superior Frontal Gyrus
(SFG)
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Nonetheless, in this paper we clearly saw that the use of extensive feature selection (in this
case using ReliefF and AdaBoost) opens the door to other techniques of machine learning that
allows us to successfully classify the cross-participant autobiography positive versus negative
valence, something at which the techniques of [15] did not succeed. Furthermore, in the tasks
at which they did succeed, the feature selection methods in this paper gave much more
accurate results as can be seen by comparing our results with those appearing in Table 1
and Fig. 2 in [15]. Moreover, while the analysis in [15] gave significant results both cross-
participant and within participant for Countdown versus Autobiography; the feature selection
methods used here gave much more accurate results (not reported here). (Note that applying a
feature selection step before the machine learning training is not the same as an a priori
selection of anatomically or functionally defined regions of interest (ROIs). Instead, we used
the strength of the machine learning classification tools themselves to properly select individ-
ual voxels directly.)

We believe it is clear that instead of using “full brains”, feature selection allows us to do
more accurate and deal with more delicate separation tasks.

In our opinion, the reason for this is not the focusing on areas responsible for the tasks; but
rather on areas having a higher signal to noise ratio; where the “signal” is information related
to the task. In principle, such voxels do not necessarily indicate that they are actually causally
involved in the task; just that from the information perspective, there is a correlation which can
be levered for classification.

Accordingly, one has to be quite careful in interpreting diagrams (like Fig. 4). We are only
discovering correlates. Looked at in this way; we might find that, e.g., if a subject was going to
blink an eye (right or left) based on positive or negative valence; a simple voxel in the motor
cortex would probably be sufficient to clearly distinguish between the cases; even though the
voxel had nothing to do with the memory recall. Since our tools for classifying are mostly
correlation based, it may be that the more focused the features are, the better results we can
expect.

There are several directions that might be followed up from this work: (i) it seems to us that
“significance vs non-significance” as a measure can be substantially refined by looking at the
degree of classification. For example, in the cases where Nawa and Ando ([15]) succeeded; we
did as well, but to a much higher (around 15% difference) percentage of classification
accuracy. (ii) We now have a clear view as to why more advanced feature selections are
advantageous (e.g., compared to ANOVA and certainly to no feature selection).

We point out that the use of multivariate methods can in principle find non-local inter-
relationships between features. In this work, especially that described in section 3, tends in fact
to eliminate this potential. AdaBoost in principle searches at each stage for a voxel that would
add the most information, which gives a bias against nearby voxel who often carry similar
information. (Philosophically, it has a similar intuition to what is called “active learning” in
AI [29]; or “optimal experimental design” [30, 31] in the statistics literature.) On the other
hand, the possible candidates for selection in AdaBoost are chosen univariately, as the voxels,
which by themselves cause the best separation of the classes. This multi-variate choice of
voxels is what allows good classification from only 260 voxels. Potentially the inter-action
between such chosen voxels might offer further biological insight. We hope that future work
will more deeply consider this aspect of the multi-variate methodology.

In section 3, on the other hand, we used a histogram approach to locate the main areas in the
brain, leveraging the biological variance in each scan; and then following with blurring and
thresholding for visualization purposes.
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In summary, the take-home message is that subtle cognitive tasks can be classified using a
combination of machine learning techniques; more specifically, the current results suggest that
the differences in terms of neurophysiological mechanisms characterizing these processes are
sufficiently coherent across participants, thus enabling above-chance cross-participant
classification.
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